大学物理 ›› 2021, Vol. 40 ›› Issue (7): 25-.doi: 10.16854 /j.cnki.1000-0712.200456

• 教学讨论 • 上一篇    下一篇

狄拉克δ -函数及有关应用

郑神州,康秀英   

  1. 1. 北京交通大学理学院,北京100044; 2. 北京师范大学物理系,北京100875
  • 收稿日期:2020-10-10 修回日期:2020-11-05 出版日期:2021-07-06 发布日期:2021-07-09
  • 作者简介:郑神州( 1965—) ,男,浙江临海人,北京交通大学理学院教授,博士,博士生导师,主要从事偏微分方程理论和应用研究.
  • 基金资助:
    国家自然科学基金( 12071021) ; 北京交通大学研究生课程建设项目( 134869522) 资助

Dirac δ-function and its related applications

ZHENG Shen-zhou,KANG Xiu-ying   

  1. 1. College of Science,Beijing Jiaotong University,Beijing 100044,China; 2. Department of Physics,Beijing Normal University,Beijing 100875,China
  • Received:2020-10-10 Revised:2020-11-05 Online:2021-07-06 Published:2021-07-09

摘要: 狄拉克δ-函数实际上是离散情况下的Kronecker δ-函数的连续化,它在数学和物理中都有重要的应用. 基于广义函

数概念引入狄拉克δ-函数的精确定义,证实狄拉克δ-函数不是通常Lebesgue 局部可积意义下的普通函数; 文中分别以单位矩

形脉冲函数、高斯函数、钟形函数和Sinc 函数的序列在弱极限意义下来逼近狄拉克δ-函数. 另外,验证了狄拉克δ-函数可以作

为Heaviside 函数的广义导数,以及其高价广义导数,并给出狄拉克δ-函数的卷积性质、伸缩性质、复合变换性质、正交性和狄拉

克梳函数,最后引入了狄拉克δ-函数与广义傅里叶变换的关系,以及其在泊松方程Dirichlet 边值问题求解中的应用.

关键词: 狄拉克δ-函数, 广义函数, 弱极限, 广义傅里叶变换格林函数

Abstract: It is indicated that Dirac δ-function is a continuation of the discrete Kronecker

δ-function,which plays an important role in both mathematics and physics. In this paper,the precise

definition of Dirac δ-function is introduced based on the concept of generalized functions,and it

is proved that the Dirac δ-function is not a usual function in the Lebesgue sense of local

integrable one. To this end,the Dirac δ-function is here approximated in the sense of weak limit by

making use of the sequences of the unit rectangle impulse functions,Gauss functions,Bell-

shaped functions and Sinc-functions,respectively. In addition,it is checked that the Dirac

δ-function is obtained as a generalized derivative of the Heaviside function,and its higher derivative is also shown.

Moreover,the convo- lutions,scales,compound transformations,orthogonality and Comb Dirac functions are recalled,respectively. Fi- nally,the relationship between Dirac δ-function and generalized Fourier transform is introduced,and we present an application to solve the Dirichlet boundary value problem of the Poisson equation.

Key words: Dirac δ-function, generalized function, weakly limits, generalized Fourier transform, Green func-tion